Lesson Plan Odd Sem 2022-2023

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 1st Year Subject: Solid Geometry Subject Teacher:- Mr. Rajesh Kumar, Ms. Vijay Sharma

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	General equation of second degree.
(5 th September -10 th September)	Tracing of conics.
(12 th September -17 th September)	Tangent at any point to the conic, chord of contact,
(19 th September – 24 th September)	pole of line to the conic, director circle of conic.
(26 th September – 1 st October)	System of conics. Confocal conics. Polar equation of a conic, tangent and normal to the conic.
(3 rd October – 8 th October)	Sphere: Plane section of a sphere. Sphere through a given circle
(10 th October -15 th October)	Intersection of two spheres, radical plane of two spheres. Co-oxal system of spheres
(17 th October -21 st October)	Cones. Right circular cone, enveloping cone and reciprocal cone
(27 th October -29 th October)	Cylinder: Right circular cylinder and enveloping cylinder.
(31 st October -5 th November)	Central Conicoids: Equation of tangent plane.
(7 th November -12 th November)	Director sphere. Normal to the conicoids.
(14 th November – 19 th November)	Polar plane of a point.
(21 st November – 26 th November)	Enveloping cone of a coincoid. Enveloping cylinder of a coincoid.
(28 th November – 3 rd December)	Paraboloids: Circular section
(5 th December -10 th December)	Plane sections of conicoids
(12 th December -17 th December)	Generating lines.
(19 th December -24 th December)	Confocal conicoid.
(26 th December – 31 st December)	Reduction of second degree equations.

Course: B.Sc. (Honours) Mathematics 1st Year Subject: Discrete Mathematics Subject Teacher:- Ms. Vijay Sharma

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Sets, principle of inclusion and exclusion
(5 th September -10 th September)	Relations, equivalence relations and partition, denumerable sets
(12 th September -17 th September)	Partial order relations, Mathematical Induction
(19 th September – 24 th September)	Pigeon Hole Principle and its applications
(26 th September – 1 st October)	Propositions, logical operations
(3 rd October – 8 th October)	Logical equivalence, conditional propositions
(10 th October -15 th October)	Tautologies and contradictions
(17 th October -21 st October)	Quantifier, Predicates and Validity
(27 th October -29 th October)	Revision ,Test And Discussion
(31 st October -5 th November)	Permutations and combinations
(7 th November -12 th November)	Probability
(14 th November – 19 th November)	Basic theory of Graphs and rings
(21 st November – 26 th November)	Discrete numeric functions, Generating functions
(28 th November – 3 rd December)	Recurrence relations with constant coefficients
(5 th December -10 th December)	Homogeneous solution, particular relations
(12 th December -17 th December)	Total rotation
(19 th December -24 th December)	Discussion and Test

Course: B.A. /B.Sc. (Non-Med + Honours) 1st Year Subject: Calculus Subject Teacher:- Ms. Ritu, Dr. Sangeeta, Dr. Ritikesh

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Definition of the limit of a function.
(5 th September -10 th September)	Basic properties of limits,
(12 th September -17 th September)	Continuous functions and classification of discontinuities.
(19 th September – 24 th September)	Differentiability. Successive differentiation.
(26 th September – 1 st October)	Leibnitz theorem. Maclaurin and Taylor series expansions.
(3 rd October – 8 th October)	Asymptotes in Cartesian coordinates, intersection of curve and its asymptotes, asymptotes in polar coordinates.
(10 th October -15 th October)	Curvature, radius of curvature for Cartesian curves, parametric curves, polar curves.
(17 th October -21 st October)	Newton's method. Radius of curvature for pedal curves.
(27 th October -29 th October)	Tangential polar equations. Centre of curvature. Circle of curvature. Chord of curvature, evolutes.
(31 st October -5 th November)	Tests for concavity and convexity. Points of inflexion.
(7 th November -12 th November)	Multiple points. Cusps, nodes & conjugate points. Type of cusps.
(14 th November – 19 th November)	Tracing of curves in Cartesian, parametric and polar co-ordinates.
(21 st November – 26 th November)	Reduction formulae. Rectification, intrinsic equations of curve.
(28 th November – 3 rd December)	Quardrature (area) Sectorial area. Area bounded by closed curves.
(5 th December -10 th December)	Volumes and surfaces of solids of revolution.
(12 th December -17 th December)	Theorems of Pappu's and Guilden.
(19 th December -24 th December)	Definition of the limit of a function.

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 1st Year Subject: Algebra Subject Teacher:- Dr. Gulshan Kumari, Dr. Pradeep Kumar

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Introduction of Symmetric, Skew-symmetric
(5 th September -10 th September)	Hermitian and skew Hermitian matrices. Elementary Operations on matrices. Rank of a matrices. Inverse of a matrix and group discussion.
(12 th September -17 th September)	Linear dependence and independence of rows and columns of matrices. Row rank and column rank of a matrix. Eigenvalues and basic Examples.
(19 th September – 24 th September)	Eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix.
(26 th September – 1 st October)	Cayley Hamilton theorem and its use in finding the inverse of a matrix. Assignment and test of unit I
(3 rd October – 8 th October)	Applications of matrices to a system of linear equations and examples.
(10 th October -15 th October)	Theorems on consistency of a system of linear equations.
(17 th October -21 st October)	Unitary and Orthogonal Matrices, Group discussion
(27 th October -29 th October)	Bilinear and Quadratic forms. assignment and test of unit II.
(31 st October -5 th November)	Limit points, open and closed sets, closure and interior
(7 th November -12 th November)	Relations between the roots and coefficients of general polynomial equation in one variable.
(14 th November – 19 th November)	Solutions of polynomial equations having conditions on roots.
(21 st November – 26 th November)	Common roots and multiple roots.
(28 th November – 3 rd December)	Transformation of equations. Assignments, group discussion and test of Unit III
(5 th December -10 th December)	Nature of the roots of an equation Descarte's rule of signs.
(12 th December -17 th December)	Nature of the roots of an equation Descarte's rule of signs.
	Solutions of cubic equations (Cardon's method).

(19 th December -24 th December)	Group discussion and assignment.
(26 th December – 31 st December)	Biquadratic equations and their solutions. Assignments, group discussion and test of Unit IV

Course: B.Sc. (Honours) Mathematics 1st Year Subject : Descriptive Statistics Subject Teacher:-Dr. Sangeeta

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Introduction of Statistics, Basic knowledge of various types of data, Collection
(5 th September -10 th September)	classification and tabulation of data. Presentation of data: histograms, frequency polygon,
(12 th September -17 th September)	frequency curve and ogives. Stem- and- Leaf and Box plots.
(19 th September – 24 th September)	Measures of Central Tendency and Location: Mean, median, mode, geometric mean,
(26 th September – 1 st October)	harmonic mean, partition values. Measures of Dispersion: Absolute and relative measures of range,
(3 rd October – 8 th October)	quartile deviation, mean deviation, standard deviation (I), coefficient of variation.
(10 th October -15 th October)	Moments, Skewness and Kurtosis: Moments about mean and about any point and derivation of their relationships
(17 th October -21 st October)	effect of change of origin and scale on moments
(27 th October -29 th October)	Sheppard's correction for moments (without derivation), Charlier's checks, Concepts of Skewness and Kurtosis. S
(31 st October -5 th November)	Charlier's checks, Concepts of Skewness and Kurtosis. S
(7 th November -12 th November)	Test and Revision
(14 th November – 19 th November)	order of class frequencies, consistency of data, independence and association of attributes
(21 st November – 26 th November)	order of class frequencies, consistency of data, independence and association of attributes
(28 th November – 3 rd December)	coefficient of association and coefficient of colligation.
(5 th December -10 th December)	Test and Revision
	Correlation for Bivariate Data: Concept and types of correlation

(12 th December -17 th December)	
	Scatter diagram, Karl Pearson Coefficient (r) of correlation and rank
(19 th December -24 th December)	correlation coefficient
(26 th December – 31 st December)	Test and revision

Course: B.Com. 1st Year Subject :Business Mathematics Subject Teacher:- Dr. Jitender Rawat

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Definition of sets and its brief introduction with examples.
(5 th September -10 th September)	Elements, types, presentation and equality of Sets, Union, Intersection of sets, related examples and questions.
(12 th September -17 th September)	Complement and Difference of Sets, Venn Diagram, Cartesian Product of two Sets, Applications of Set Theory.
(19 th September – 24 th September)	Definition and basic properties of indices, Exponent.
(26 th September – 1 st October)	Solved and unsolved question of indices.
(3 rd October – 8 th October)	Introduction and some important deductions, examples and related questions.
(10 th October -15 th October)	Product, quotient, power and base change formula of logarithms, Two systems of logarithms.
(17 th October -21 st October)	Characteristic and mantissa, anti-logarithms, miscellaneous exercise.
(27 th October -29 th October)	Introduction to permutations and combinations, factorial notation, fundamental principal of counting.
(31 st October -5 th November)	Difference between permutations and combinations, permutations with different types of groups.
(7 th November -12 th November)	Some theorems on combinations, practical problems on combinations.
(14 th November – 19 th November)	Introduction of sequences and series, Arithmetic progression (A.P.).
(21 st November – 26 th November)	Arithmetic mean, Geometric Progression (G.P.), application of A.P. and G.P.
(28 th November – 3 rd December)	Introduction of data, collection, editing and classification of data.
(5 th December -10 th December)	Methods of classification, types of continuous series, Data interpretation.
	Tabulation, parts of a statistical table, types of tables, Bar graphs, line

(12 th December -17 th December)	graphs and based questions.
	Pie charts, examples based on pie charts.
(19 th December -24 th December)	
	Miscellaneous exercise.
$(26^{th} December - 31^{st} December)$	

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 2nd Year Subject: Advanced Calculus Subject Teacher:- Ms. Vijay Sharma, Dr. Monika

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Continuity, Sequential Continuity,
(5 th September -10 th September)	Properties of continuous functions, Uniform continuity, chain rule of differentiability.
(12 th September -17 th September)	Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and their geometrical interpretations.
(19 th September – 24 th September)	Taylor's Theorem with various forms of remainders
(26 th September – 1 st October)	Darboux intermediate value theorem for derivatives, Indeterminate forms.
(3 rd October – 8 th October)	Limit and continuity of real valued functions of two variables.
(10 th October -15 th October)	Partial differentiation.
(17 th October -21 st October)	Total Differentials; Composite functions & implicit functions.Change of variables.
(27 th October -29 th October)	Homogenous functions & Euler's theorem on homogeneous functions.
(31 st October -5 th November)	Taylor's theorem for functions of two variables.
(7 th November -12 th November)	Differentiability of real valued functions of two variables.
(14 th November – 19 th November)	Schwarz and Young's theorem.
(21 st November – 26 th November)	Implicit function theorem.
(28 th November – 3 rd December)	Maxima, Minima and saddle points of two variables. Lagrange's method of multipliers.
(5 th December -10 th December)	Curves: Tangents, Principal normals, Binormals, Serret-Frenet formulae.
	Locus of the centre of curvature, Spherical curvature

(12 th December -17 th December)	
(19 th December -24 th December)	Locus of centre of Spherical curvature, Involutes, evolutes, Bertrand Curves.
(26 th December – 31 st December)	Surfaces: Tangent planes, one parameter family of surfaces, Envelopes.

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 2nd Year Subject: Statics Subject Teacher:- Mr. Rajesh Kumar, Dr. Ritikesh

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Composition and resolution of forces
(5 th September -10 th September)	Composition and resolution of forces
(12 th September -17 th September)	Parallel forces
(19 th September – 24 th September)	Moments and Couples
(26 th September – 1 st October)	Moments and Couples
(3 rd October – 8 th October)	Analytical conditions of equilibrium of coplanar forces
(10 th October -15 th October)	Analytical conditions of equilibrium of coplanar forces
(17 th October -21 st October)	Friction.
(27 th October -29 th October)	Friction.
(31 st October -5 th November)	Centre of Gravity
(7 th November -12 th November)	Virtual work.
(14 th November – 19 th November)	Forces in three dimensions
(21 st November – 26 th November)	Poinsots central axis.
(28 th November – 3 rd December)	Wrenches
(5 th December -10 th December)	Null lines and planes

(12 th December -17 th December)	Stable and unstable equilibrium.
(19 th December -24 th December)	Stable and unstable equilibrium.
(26 th December – 31 st December)	Stable and unstable equilibrium.

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 2nd Year Subject: Partial Differential Equations Subject Teacher:-Dr. Chhavi Mangla, Dr. Gulshan Kumari

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Continuity, Sequential Continuity,
(5 th September -10 th September)	Properties of continuous functions, Uniform continuity, chain rule of differentiability.
(12 th September -17 th September)	Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and their geometrical interpretations.
(19 th September – 24 th September)	Taylor's Theorem with various forms of remainders
(26 th September – 1 st October)	Darboux intermediate value theorem for derivatives, Indeterminate forms.
(3 rd October – 8 th October)	Limit and continuity of real valued functions of two variables.
(10 th October -15 th October)	Partial differentiation.
(17 th October -21 st October)	Total Differentials; Composite functions & implicit functions.Change of variables.
(27 th October -29 th October)	Homogenous functions & Euler's theorem on homogeneous functions.
(31 st October -5 th November)	Taylor's theorem for functions of two variables.
(7 th November -12 th November)	Differentiability of real valued functions of two variables.
(14 th November – 19 th November)	Schwarz and Young's theorem.
(21 st November – 26 th November)	Implicit function theorem.
(28 th November – 3 rd December)	Maxima, Minima and saddle points of two variables. Lagrange's method of multipliers.
(5 th December -10 th December)	Curves: Tangents, Principal normals, Binormals, Serret-Frenet formulae.

(12 th December -17 th December)	Locus of the centre of curvature, Spherical curvature
(19 th December -24 th December)	Locus of centre of Spherical curvature, Involutes, evolutes, Bertrand Curves.
(26 th December – 31 st December)	Surfaces: Tangent planes, one parameter family of surfaces, Envelopes.

Course: B.Sc. (Honours) Mathematics 2nd Year Subject: Differential Geometry Subject Teacher:- Dr. Chhavi Mangla

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	One Parameter family of Surfaces : Envelope
(5 th September -10 th September)	One Parameter family of Surfaces : Characteristics, edge of regression
(12 th September -17 th September)	Developable surfaces.
(19 th September – 24 th September)	Developables Associated with a Curve : Osculating developable, Polar developable, Rectifying developable.
(26 th September – 1 st October)	Two- parameter Family of Surfaces: Envelope, Characteristics points,
(3 rd October – 8 th October)	Curvilinear coordinates, First order magnitudes,
(10 th October -15 th October)	Directions on a surface, The normal,
(17 th October -21 st October)	Second order magnitudes, Derivatives of n
(27 th October -29 th October)	Curves on a Surface: Principal directions and curvatures,
(31 st October -5 th November)	First and second curvatures, Euler's theorems,
(7 th November -12 th November)	Dupin's indicatrix, The surfaces $z = f(x,y)$, Surface of revolution.
(14 th November – 19 th November)	Conjugate directions, Conjugate systems. Asymptotic lines,
(21 st November – 26 th November)	Curvature and torsion, Isometric parameters, Null lines, or minimal curves.
(28 th November – 3 rd December)	Geodesics and Geodesic Parallels: Geodesics: Geodesic property, Equation of Geodesics,
	Surface of revolution, Torsion of Geodesic

(5 th December -10 th December)	
(12 th December -17 th December)	Curves in Relation to Geodesics: Bonnet's theorem, Joachimsthal's theorems
(19 th December -24 th December)	Vector curvature, Geodesic curvature k_g
(26 th December – 31 st December)	Other formulae for k_g , Bonnet's formula

Course: B.Sc. (Honours) Mathematics 2nd Year Subject: Probability Distribution Subject Teacher:- Dr. Ritikesh

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Generating Functions:
(5 th September -10 th September)	Moment generating function
(12 th September -17 th September)	cumulant generating function along with their properties and uses.
(19 th September – 24 th September)	Tchebychev's inequality, Convergence in probability
(26 th September – 1 st October)	Weak and strong laws of large numbers (Statements only).
(3 rd October – 8 th October)	Bernoulli, binomial distributions with their properties.
(10 th October -15 th October)	Poisson distributions with their properties.
(17 th October -21 st October)	Geometric distributions with their properties.
(27 th October -29 th October)	hyper-geometric distributions with their properties.
(31 st October -5 th November)	Uniform distributions with their properties.
(7 th November -12 th November)	gamma distributions with their properties.
(14 th November – 19 th November)	beta distributions with their properties.
(21 st November – 26 th November)	Exponential distributions with their properties.
	Normal distribution with its properties

$(28^{th} November - 3^{rd} December)$	
	Normal distribution with its properties
(5 th December -10 th December)	
	Normal distribution with its properties
(12 th December -17 th December)	
	Central Limit Theorem (Statement only) and its applications.
(19 th December -24 th December)	
	Central Limit Theorem (Statement only) and its applications.
$(26^{th} December - 31^{st} December)$	

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 3rd Year Subject: Groups and Rings Subject Teacher:- Dr. Monika, Dr. Sangeeta

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Definition of a group with example and simple properties of groups,
(5 th September -10 th September)	Subgroups and Subgroup criteria,
(12 th September -17 th September)	Generation of groups, cyclic groups,
(19 th September – 24 th September)	Cosets, Left and right cosets, Index of a sub-group Coset decomposition,
(26 th September – 1 st October)	Largrage's theorem and its consequences, Normal subgroups, Quotient groups,
(3 rd October – 8 th October)	Homomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
(10 th October -15 th October)	Automorphisms of cyclic groups, Permutations groups.
(17 th October -21 st October)	Even and odd permutations. Alternating groups,
(27 th October -29 th October)	Cayley's theorem, Center of a group and derived group of a group.
(31 st October -5 th November)	Introduction to rings, subrings,
(7 th November -12 th November)	integral domains and fields, Characteristics of a ring.
(14 th November – 19 th November)	Ring homomorphisms, ideals (principle, prime and Maximal)

	Quotient rings, Field of quotients of an integral domain.
(21 st November – 26 th November)	
	Euclidean rings, Polynomial rings, Polynomials over the rational field,
$(28^{th} November - 3^{rd} December)$	
	The Eisenstein's criterion, Polynomial rings over commutative rings,
(5 th December -10 th December)	
	Unique factorization domain, R unique factorization domain implies so
(12 th December -17 th December)	is R[X1 , X2Xn]
	Revision
(19 th December -24 th December)	
	Discussion and Test
$(26^{th} December - 31^{st} December)$	

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 3rd Year Subject: Numerical Analysis Subject Teacher:- Dr. Gulshan Kumari , Dr. Pradeep Kumar

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Finite Differences operators and their relations.
(5 th September -10 th September)	Finding the missing terms and effect of error in a difference tabular values, Interpolation with equal intervals.
(12 th September -17 th September)	Newton's forward and Newton's backward interpolation formulae. Interpolation with unequal intervals.
(19 th September – 24 th September)	Newton's divided difference, Lagrange's Interpolation formulae, Hermite Formula.
(26 th September – 1 st October)	Central Differences: Gauss forward and Gauss's backward interpolation formulae, Sterling, Bessel Formula.
(3 rd October – 8 th October)	Probability distribution of random variables, Binomial distribution.
(10 th October -15 th October)	Probability distribution of random variables, Binomial distribution.
(17 th October -21 st October)	Numerical Differentiation: Derivative of a function using interpolation formulae.
(27 th October -29 th October)	Eigen Value Problems: Power method, Jacobi's method.
(31 st October -5 th November)	Given's method, House Holder's method.
(7 th November -12 th November)	QR method, Lanczos method.
	Numerical Integration: Newton-Cote's Quadrature formula, Trapezoidal

(14 th November – 19 th November)	rule.
	Simpson's one- third and three-eighth rule, Chebychev formula, Gauss
$(21^{st} November - 26^{th} November)$	Quadrature formula.
and a set of the set o	Numerical solution of ordinary differential equations: Single step
$(28^{th} November - 3^{rd} December)$	methodsPicard's method. Taylor's series method.
	Euler's method, Runge-Kutta Methods.
(5 th December -10 th December)	
	Multiple step methods; Predictor-corrector method.
(12 th December -17 th December)	
	Modified Euler's method.
(19 th December -24 th December)	
	Milne-Simpson's method.
$(26^{th} December - 31^{st} December)$	

Course: B.A. /B.Sc. (Non-Med + Honours) Mathematics 3rd Year Subject: Real Analysis Subject Teacher:-Ms. Ritu

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Introduction of Riemann integral and integrability of continuous,
(5 th September -10 th September)	Monotonic functions, Integrabililty of continuous functions and group discussion.
(12 th September -17 th September)	Integrability of monotonic, The Fundamental theorem of integral calculus and basic Examples.
(19 th September – 24 th September)	Mean value theorems of integral calculus. Assignment and test of unit I
(26 th September – 1 st October)	Improper integrals and their convergence, Comparison tests.
(3 rd October – 8 th October)	Abel's and Dirichlet's tests, Frullani's integral
(10 th October -15 th October)	Integral as a function of a parameter, continuity
(17 th October -21 st October)	Differentiability and integrability of an integral of a function of a parameter. Group discussion, assignment and test of unit II.
(27 th October -29 th October)	Definition and examples of metric spaces, neighborhoods.
(31 st October -5 th November)	Limit points, open and closed sets, closure and interior

	Equivalent metrics, Cauchy sequences,
(7 th November -12 th November)	
	Completeness, Cantor's intersection theorem
(14 th November – 19 th November)	
	Baire's category theorem, contraction Principle.
(21 st November – 26 th November)	Assignments, group discussion and test of Unit III
	Continuous functions, uniform continuity, compactness for metric spaces
(28 th November – 3 rd December)	
	Total boundedness, finite intersection property
(5 th December -10 th December)	
	continuity in relation with compactness
(12 th December -17 th December)	
	Connectedness, components.
(19 th December -24 th December)	Group discussion and assignment.
	Continuity in relation with connectedness.
$(26^{th} December - 31^{st} December)$	Assignments, group discussion and test of Unit IV

Course: B.Sc. (Honours) Mathematics 3rd Year Subject: Operation Research (1) Subject Teacher:- Dr. Chhavi Mangla

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Definition, scope, methodology and applications of OR. Types of OR models.
(5 th September -10 th September)	Concept of optimization, Linear Programming: Introduction, Formulation of a Linear Programming Problem (LPP),
(12 th September -17 th September)	Requirements for an LPP, Advantages and limitations of LP.
(19 th September – 24 th September)	Graphical solution: Multiple, unbounded and infeasible solutions.
(26 th September – 1 st October)	Principle of simplex method: standard form, basic solution, basic feasible solution.
(3 rd October – 8 th October)	Computational Aspect of Simplex Method: Cases of unique feasible solution,
(10 th October -15 th October)	Computational Aspect of Simplex Method: Cases of no feasible solution, multiple solution and unbounded solution and degeneracy.
(17 th October -21 st October)	Two Phase and Big M methods.
(27 th October -29 th October)	Duality in LPP, primal-dual relationship.

(31 st October -5 th November)	Transportation Problem: Methods for finding basic feasible solution of a transportation problem, Modified distribution method for finding the optimum solution,
(7 th November -12 th November)	Unbalanced and degenerate transportation problems, transhipment problem, maximization in a transportation problem.
(14 th November – 19 th November)	Assignment Problem: Solution by Hungarian method, Unbalanced assignment problem
(21 st November – 26 th November)	maximization in an assignment problem,
(28 th November – 3 rd December)	Crew assignment and Travelling salesman problem.
(5 th December -10 th December)	Game Theory: Two person zero sum game, Game with saddle points
(12 th December -17 th December)	the rule of dominance;
(19 th December -24 th December)	Algebraic, graphical methods for solving mixed strategy games.
(26 th December – 31 st December)	linear programming methods for solving mixed strategy games.

Course: B.Sc. (Honours) Mathematics 3rd Year Subject: Integral Equations Subject Teacher:- Ms. Vijay Sharma

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Linear integral equations, Some basic identities, Initial-value problems reduced to Volterra integral equations
(5 th September -10 th September)	Method of successive approximation to solve Volterra integral equations of second kind, Iterated kernels and Neumann series for Volterra
(12 th September -17 th September)	Resolvent kernel as a series in O, Laplace transform method for a difference kernel
(19 th September – 24 th September)	Boundary value problems reduced to Fredholm integral equations,
(26 th September – 1 st October)	Iterated kernels and Neumann series for Fredholm equations, Resolvent kernel as a sum of series
(3 rd October – 8 th October)	Fredholm equations with degenerate kernel,
(10 th October -15 th October)	Approximation of a kernel by a degenerate kernel, Fredholm Alternative.

	Fredholm resolvent kernel as a ratio of two series.
(17 th October -21 st October)	
and the second section of the second	Volterra integral Solution of a equation of the first kind
(27 th October -29 th October)	
at th	Green's function. Use of method of variation of parameters to
(31 st October -5 th November)	construction the Green's function for a nonhomogeneous linear second
	degree BVP
(7 th November -12 th November)	Basic four properties of the Green's function, Alternate procedure for
	construction of the Green's function by using its basic four properties
	Method of series representation of the Green's function in terms of the
(14 th November – 19 th November)	solutions of the associated homogeneous BVP
	Reduction of a BVP to a Fredholm integral equation with kernel as
(21 st November – 26 th November)	Green's function.
	Homogeneous Fredholm equations with symmetric kernels
$(28^{th} November - 3^{rd} December)$	
	Solution of Fredholm equations of the second kind with symmetric
(5 th December -10 th December)	kernel
	Method of Fredholm Resolvent Kernel, Method of Iterated Kernels,
(12 th December -17 th December)	
	Fredholm Equations of the First Kind with Symmetric Kernels.
(19 th December -24 th December)	
4	Method of successive approximations to solve Fredholm equation of
$(26^{th} December - 31^{st} December)$	second kind

Course: B.Sc. (Honours) Mathematics 3rd Year Subject: Methods of Applied Mathematics Subject Teacher:- Dr. Chhavi Mangla

WEEK	TOPICS TO BE COVERED
(27 th August – 3 rd September)	Solution of 3D Laplace, wave and heat equations in spherical polar co-ordinates by the method of separation of variables.
(5 th September -10 th September)	Solution of 3D Laplace, wave and heat equations in cylindrical polar co-ordinates by the method of separation of variables.
(12 th September -17 th September)	Fourier series solution of the wave equation, transformation of boundary value problems.
(19 th September – 24 th September)	Fourier series solution of the heat equation, steady-state temperature in plates
(26 th September – 1 st October)	The heat and wave equations in unbounded domains
(3 rd October – 8 th October)	Fourier transform solution of boundary value problems.
(10 th October -15 th October)	The heat equation in an infinite cylinder and in a solid sphere.

(17 th October -21 st October)	Hankel transform of elementary functions. Operational properties of the Hankel transform.
(27 th October -29 th October)	Applications of Hankel transforms to PDE.
(31 st October -5 th November)	Definition and basic properties of finite Fourier sine and cosine transforms
(7 th November -12 th November)	Applications of Fourier sine and cosine transforms to the solutions of BVP's and IVP's.
(14 th November – 19 th November)	Moments and products of inertia
(21 st November – 26 th November)	Angular momentum of a rigid body
(28 th November – 3 rd December)	Principal axes and principal moment of inertia of a rigid body
(5 th December -10 th December)	kinetic energy of a rigid body rotating about a fixed point
(12 th December -17 th December)	Momental ellipsoid and equimomental systems
(19 th December -24 th December)	Coplanar mass distributions,
(26 th December – 31 st December)	General motion of a rigid body.