Lesson Plan 2021-22 (2nd Sem)

Name : Smriti Sharma & Rashmi Kakkar Paper Code: PHY-201

Class: B.Sc. 1st year Subject: Mechanics

1st week of April	Unit I: Elasticity, Hooke's law, Elastic constants and their relations.
2 nd week of April	Poisson's ratio, torsion of cylinder and twisting couple.
3 rd week of April	Bending of beam (bending moment and its magnitude) cantilevers, Centrally loaded beam.
4 th week of April	Unit II: Assumptions of Kinetic Theory of gases, Law of equipartition of energy and its applications for specific heats of gases
1 st week of May	TEST 1 OF UNIT 1; Maxwell distribution of speeds and velocities (derivation required).
2 nd week of May	Experimental verification of Maxwell's Law of speed distribution : most probable speed, average and r.m.s. speed, mean free path.
3 rd week of May	Transport of energy and momentum, diffusion of gases.
3 rd week of May	ASSIGNMENT 1; Brownian motion (qualitative), Real gases, Van der Waal's equation.
4 th week of May	Unit III: Reference systems, inertial frames, Gallilean invariance and Conservation laws.
1 st week of June	TEST 2 OF UNIT 2; Newtonian relativity principle, Michelson - Morley experiment : Search for ether.
2 nd week of June	Lorentz transformations length contraction, time dilation, velocity addition theorem.
3 rd week of june	Variation of mass with velocity and mass energy equivalence. Test 3 of UNIT 3; ASSIGNMENT 2

Lesson Plan 2021-22 (2nd Sem)

Name: Ms.Komal and Ms. Ritu Malik Paper PHY-202

Physics :- BSc 1st year subject. : Electromagnetic Induction and Electronic Devices

April 1 st week	Unit I: Growth and decay of current in a circuit with (a) Capacitance and resistance (b) resistance and inductance
April 2 nd week	c) Capacitance and inductance (d) Capacitance resistance and inductance. AC circuit analysis using complex variables with (a) capacitance and resistance,
April 3 rd week	(b) resistance and inductance (c) capacitance and inductance (d) capacitance, inductance and resistance Series and parallel resonant circuit.
April 4 th week	Quality factor (Sharpness of resonance). Unit I test and Assignment Semiconductor Diodes: Energy bands in solids. Intrinsic and extrinsic semiconductor
May 1 st week	Hall effect, P-N junction diode and their V-I characteristics. Zener and avalanche breakdown. Resistance of a diode, Light Emitting diodes (LED)
May 2 nd week	Photo conduction in semiconductors, photodiode, Solar Cell Diode Rectifiers: P-N junction half wave and full wave rectifier.
May 3 rd week	Types of filter circuits (L and - Pi wiith theory). Zener diode as voltage regulator, simple regulated power supply. Numerical practice and Assignment. Transistors: Junction Transistors, working of NPN and PNP transistors,
May 4 th week	Transistor connections (C-B, C-E, C-C mode), constants of transistor. Transistor characteristic curves (excluding h parameter analysis) advantage of C-B configuration. C.R. O.
June 1 st week	Unit III Transistor Amplifers: Transistor biasing, methods of Transistor biasing and stabilization.D.Cload line. Common-base and common-emitter transistor biasing. Commonbase, common-Emitter amplifers
June 2 nd week	Classification of amplifers.Resistance-capacitance (R-C) coupled amplifer(two stage; concept of band width, no derivation). Feed-back in amplifers,advantage of negative feedback Emitter follower
June 3 rd week	Test of unit -2, Oscillator, Principle of Oscillation, Classification of Oscillator, Condition for self Sustained oscillation: Barkhousen Criterion for oscillations,. Tuned collector common emitter Oscillator. Hartley oscillator. Colpitt's oscillator unit test 3
June 4 th week	.Doubt classe, revision and test

Lesson Plan Jan 2021-22(4th sem)

Name: Kusum Lata and Abhilasha

Class: B.Sc. 2nd year

Paper Code: 401

Subject: Statistical Mechanics

April 1 st week	Introduction to statistical mechanics ,Probability , some probability considerations.
	Combinations possessing maximum probability and minimum probability

2 nd week	Distribution of molecules in two boxes , case with weightage. Phase space , micro and macro states with distribution of particles
3 rd week	statistical fluctuations constraints and accessible states, thermodynamical probability. Numerical problems
4 th week	Postulates of statistical physics, division of phase space into cells. Test and assignment.
May 1 st week	Condition of equilibrium between two systems in thermal contact,β- parameter. Entropy and probability.
2 nd week	Boltzman-distribution law, evaluation of A and β . Bose Einstein statistics, application of Bose Einstein statistic to Planks radiation law.
3 rd week	Bose Einstein gas, Fermi-Dirac statistics. Numericals, doubt class and class test.
4 th week	MB-law as limiting case of BE degeneracy and Bose Einstein condensation. Revision
June 1 st week	Fermi- Dirac gas , electron gas in metals, Zero point energy and assignement submission.
2 nd week	Specific heat of metals and its solutions ,class test
3 rd week	Numerical problems and quiz

Lesson Plan 2021-22(4th sem)

Name: Sapana kumari and Meena

Class: B.Sc. 2nd year

Paper Code: 402

Subject: Optics-2

April 1 st week	Introduction to Optics and brief discussion on interference. Brief introduction to Interference by division of amplitude, colour of thin films.
2 nd week	Wedge Shaped film, Newton's ring, introduction to interferometers, Michelson's interferometer and its application.
3 rd week	Standardisation of a meter to determine wavelength, class test. Fresnel's diffraction and half period Zones, Zone plate.
4 th week	Diffraction at a straight edge, rectangular slit and circular aperture and doubts regarding concepts. Numerical problems, test and assignment.
May 1 st week	Introduction to Fraunhoffer diffraction , One slit diffraction , Two slit diffraction .
2 nd week	N-slit diffraction, Plane transmission grating spectrum, Dispersive power of a grating & limit of resolution. Rayleigh's criterion, Resolving power of telescope and a grating.
3 rd week	Class Presentation and assignement submission. Brief introduction to polarisation, polarisation and double refraction
4 th week	polarisation by reflection. Polarisation by scattering, Malus law, phenomenon of double refraction, Huygen's wave theory of double refraction.
June 1 st week	Analysis of polarised light: Nicol prism, Quarter wave plate and half wave plate. Production and detection of plane polarised light. Class test.
2 nd week	Detection of Circularly polarised and elliptically polarised light. Optical activity. Fresnel's theory of rotation and Specific rotation and introduction of polarimeters.
3 rd week	Polarimeters : half shade polarimeter and Biquartz. Revision and test

Lesson Plan 2021-2022 (6th sem)

Name: Kusum Lata and Meena Yadav

Class: B.Sc. 3rd year

Paper Code: 601

Subject: Atomic, Molecular and Laser Physics

April 1 st week	Introduction to atomic spectroscopy, Quantum numbers and space quantization, vector atom model, quantum numbers associated with vector atom model.
	model, quantum numbers associated with vector atom model.
April 2 nd week	Explanation of penetrating and non- penetrating orbits, spectral lines in different series of
	alkali spectra. Discussion on spin- orbit interaction, doublet term separation, LS coupling.
April 3 rd week	Explanation of jj coupling, expressions for interaction energies for LS and jj coupling,
	Numerical problems, Test and Assignment
April 4 th week	Explanation of normal and anomalous Zeeman effect, Zeeman pattern of D1 and D2 lines of
	Na atom.
May 1 st week	Paschen- Back effect of a single valance electron system, weak field stark effect of hydrogen
	atom.
May 2 nd week	Discrete set of electronic energies of molecules, quantization of vibrational and rotational
	energies. Description of Raman effect, Stoke's and anti-Stoke's lines, Unit test
May 3 rd week	Introduction to LASER, Main features of LASER: directionality, high intensity, high degree of coherence.
May 4 th week	Einstein's coefficients and possibility of amplification, momentum transfer, life time of a level.
June 1 st week	Kinetics of optical absorption, threshold condition for LASER emission, LASER pumping.
June 2 nd week	He-Ne LASER and Ruby LASER (principle, construction and working), Application of LASER in
	the field of medicine and industry.
June 3 rd week	Revision & test

Lesson Plan 2021-2022(6th sem)

Name: Geetanjali and Meena Class: B.Sc. 3rd year

Paper Code: 602 Subject: Nuclear Physics

April 1 st week	Unit 1: Nuclear mass and binding energy, systematics of nuclear binding energy,
April 2 nd week	Nuclear stability, Various properties of Nucleus: spin, parity, magnetic dipole moment, quadrupole moment.
April 3 rd week	Determination of mass by Bain Bridge and Jordan Mass spectrographs,

April 4 th week	Determination of charge by Mosely law, Rutherford scattering. Numerical discussion and test of unit 1
May 1 st week	Unit :2, Interaction of charged particles (Alpha particles), Energy loss of heavy charged particles, Alpha disintegration and its theory,
May 2 nd week	Energetics of alpha Decay, Range and straggling of alpha particles, Geiger-Nuttal law.
May 3 rd week	Introduction of light charged particle (beta particle), origin of continuous Beta spectrum (Neutrino Hypothesis), types of beta decay, energetics of beta decay, energy loss in beta decay.
May 4 th week	Gamma decay Interaction of Gamma rays through photoelectric effect, Compton effect and pair production.
June 1 st week	Electron position annihilation. Absorption of gamma rays and its application. Numerical discussion and test of unit 2
June 2 nd week	Unit 3: General aspects of Nuclear reactors, fission and fusion reactors, linear and tandem accelerators, Cyclotron and Betatron, ionisation and proportional counter, Gm Counter.
June 3 rd week	Scintillation counter, Semiconductor counter, types of Nuclear reactions. Q-values and reaction threshold, conservation laws. Test of unit 3.